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Abstract

Attitude determination is a major element of

the operation and maintenance of a spacecraft.
There are several existing methods of determining

the attitude of a spacecraft. One of the most

commonly used methods utilizes the Kalman filter

to estimate the attitude of the spacecraft.

Given an accurate model of a system and
adequate observations, a Kalman filter can

produce accurate estimates of the attitude. If the

system model, filter parameters, or observations

are inaccurate, the attitude estimates may be

degraded. Therefore, it is advantageous to

develop a method of automatically tuning the

Kalman filter to produce the accurate estimates.

In this paper, a three-axis attitude

determination Kalman filter, which uses only

magnetometer measurements, is developed and

tested using real data. The appropriate filter

parameters are found via the Process Noise

Covariance Estimator (PNCE). The PNCE

provides an optimal criterion for determining the
best filter parameters.

Introduction

The development of light-weight, low-cost

spacecrafts that can accomplish complex tasks is

essential to the success of many NASA missions

(such as Mission to Planet Earth) as well as the

success of many commercial missions. One way
to ensure a light-weight, low-cost spacecraft is to

place constraints on the amount of computer
hardware. This constraint demands the use of

computationally efficient algorithms that do not

require a significant amount of CPU.

Consequently, reducing the amount of required

hardware improves the performance of the

spacecraft and increases the probability of a
success.

One of the many functions of a satellite is the
gathering and processing of information. In most

cases, this information is transmitted to a specified
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location. To successfully complete this objective,
the orientation of the spacecraft must be known

and controlled very precisely. In the past decade,

there has been a significant amount of work in the
area of attitude determination and attitude control

[1-5]. During this period of time, attitude
determination algorithms that utilize a
combination of the measurements and a

mathematical model to estimate the orientation of

the spacecraft [6-7] were the most popular. One of

the most commonly used and most robust
estimators in attitude determination is the Kalman

filter. The complexity of this estimator ranges

from attitude-only estimator using a QUEST
model to an extended Kalman filter with 36 states

[81.
Attitude estimators like the Kalman filter are

more robust than single-frame methods, such as

TRIAD [2], QUEST [4], and FOAM [3]. For
example, during periods of near coalignment (the

pitch angle is nearly unobservable) or during an

eclipse, a sequential estimator, such as the Kalman

filter, can provide state estimates by propagating

the states with the nominal model. Single-frame

methods that rely on measurements can only

produce anomalous estimates of the attitude.

These estimates may endanger the success of the
mission.

The most difficult filter parameter to
determine in the Kalman filter is the process noise

covariance, Q. In theory, the process noise is

defined as a gaussian process. In real-world
applications, the model error can be stochastic,

deterministic, or a combination of both. Since the

attitude determination problem is very nonlinear,

there is a larger possibility for errors in the system
model. These errors, along with any stochastic

errors, are referred to as modeling errors. As the

percentage of non-gaussian modeling errors

increases, so does the difficulty in determining an

appropriate process noise covariance. Therefore,

it is beneficial to develop an algorithm that
produces the filter parameters which yield accurate

state estimates. In this paper, the PNCE, an

algorithm that determines the appropriate filter
parameters, is applied to attitude determination.

This method provides an automated method of

tuning the estimator to obtain reasonable state
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estimateswithoutpriorknowledgeof theprocess
noisecovariance.The PNCEallowsfor the
implementationof Kalmanfilter typealgorithms
in real-worldapplicationswherethetrueor the
appropriateprocessnoisecovarianceisnotknown.

lfa spacecrafthasratesensingcapability,then
theattitudeestimationisgenerallyimprovedover
non-ratesensingcapablespacecraft.Whenthis
capabilityisnotavailable,theattitudeestimation
canbeimprovedbyestimatingtheratesbasedona
modelof thespacecraftrotationaldynamics.The

Solar Anomalous and Magnetospheric Particle

Explorer (SAMPEX) [9] and Earth Radiation

Budget Satellite (ERBS) [10] are two such

spacecraft that do not have rate sensing

capabilities. In the case of SAMPEX and ERBS,
accurate attitude estimates are ensured by

estimating the rates that are based on simple
rotational dynamic models along with the attitude.

These rotational models improve the overall
estimation of the attitude. However, there is no

general model for rotational dynamics.
In 1990, Chu and Harvey showed that models

of the rotational dynamics could be identified [ 10-

11] and that these models improved the overall
estimation of the attitudes. However, obtaining

these models can be time-consuming, and the

models are only valid for the identified orbit. In
1993, Mook [12-13] described a numerical

procedure of finding the appropriate dynamic
model of the rates. This procedure can produce

models that are valid over a duration longer than
the orbit used in the identification. Consequently,

this method can be used in prediction. This

method is new and has not been applied to many

spacecraft. Hence, there is still a need for a simple
general model of the rotational dynamics.

To circumvent this problem of not having an

accurate dynamic model, a commonly used gyro
bias model, based on a Markov process, is used in

place of complicated, difficult to obtain rotational

dynamic models. This type of simple bias model
has been successfully used in the Real-Time

Sequential Filter (RTSF) [9]. RTSF uses the gyro

bias model along with the basic theory of attitude
determination to produce accurate attitude

estimates. The accuracy of the estimates from

RTSF are dependent on certain filter parameters.

In many applications, the RTSF may require a
manual tuning. The complexity of this task is a
function of the known and unknown dynamics of a

spacecraft.

The rest of this paper is divided into three

parts Theory, Results, and Conclusion. The

theory section reviews the formulation of the
attitude estimator and the PNCE. The result

section starts with a definition of the problem and

the given filter parameters. Next, these parameters
are used along with the PNCE to obtain accurate
attitude estimates. The conclusion section

summarizes the results and states a few

observations.

Theory

With few exceptions, the dynamics of a

spacecraft can be described in terms of classic

mechanics. The dynamics of a spacecraft are a
function of its orbit and attitude. In this work,

only the dynamics associated with the attitude are
addressed. The first step in this analysis is the
definition of the attitude.

Attitude Determination: Definition

The attitude of a spacecraft is defined as its

orientation. Attitude determination is the process

of computing the orientation of the spacecraft
relative to either an inertial reference or some

object of interest, such as the earth. The attitude

determination problem can be stated as: "Given

measurements of angles or changes in angles with

respect to the spacecraft and a reference,

determine the orientation of the spacecraft."

Attitude measurements are produced by
sensor such as Fine Sun Sensors (FSS), Three Axis

Magnetometers (TAM) sensor, Horizon sensors,
Star Trackers, etc. FSS and TAM measurements

are used by algorithms like TRIAD [2], QUEST

[4], FOAM [3], and the Kalman filter [5,14] to

determine the orientation of the spacecraft. The

accuracy of the attitude is a function of the sensors
and the attitude determination algorithm. Attitude
estimators use a combination of several attitude

sensor measurements, which are usually associated

with the three-axis attitude, to improve the

reliability and accuracy of the algorithm.
Three-axis attitude is most conveniently

thought of as a coordinate transformation from a

reference axis in inertial space to an axis on the

spacecraft. For a rigid body, or assumed rigid
body spacecraft, the direction of cosine matrix or

attitude matrix, A, represents the coordinate

transformation that maps vectors from the
reference frame to the body frame. This
transformation can be described as

e_,,,_= A e: (1)
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wheree_,_ and ero, have components resolved
along the body and reference axes, respectively.

The attitude matrix consists of three orthogonal,
right-handed triads fi, _3,_, unit vectors fixed in

the body, such that

x ¢ = ,_, (2)

Hence, if one can specify the components of _,

v, and _ along the three axes of the coordinate

frame, then the orientation can be determined

completely.

The attitude matrix is a real orthogonal matrix

that has many different orientation

parameterizations. The type of parameterization

used is dependent on the application. A
commonly used parameterization is the Euler

parameterization (Euler angles). On of the

benefits of using this type of parameterization is

that the Euler angles have some physical

significance Another type of parameterizations is
the quaternions parameterization, which is also

known as the Euler symmetric parameterization.

Quaternion Parameterization

The term quaternion, which is sometimes

referred to as Euler symmetric parameters, was
first used by Hamilton [15] in 1843.

Many authors [16-20] have discussed the use

of this four-parameter representation of the

attitude. The advantage of using quaternions over

Euler angles is that quaternions are not singular,

unlike Euler angles. Because of its advantage,

today, most attitude estimators utilize quaternion

attitude representation instead of Euler angles.
Quaternions are also easier to work with.

However, the quaternions representation is not
unique. This characteristic is discussed later in the

text. The quaternions are defined by three primary
parameters and an auxiliary parameter

[q, q, q,]=esin(_)

q,= cos(-_) (3)

where:

_, is a unit vector corresponding to the
axis or rotation

is the angle of rotation

The quaternion parameterization is nonsingular

because the quaternions are not independent. The

quaternions are related by the following
normalization constraint

2 2 2 2

q, + q2 + q, + q, = 1 (4)

Quaternions can be defined in terms of the attitude

matrix or the Euler angles. The reverse is also

true, that the attitude matrix can be expressed in
terms of the quaternions

[q:-q:-q_+q: 2(q,q,+q,q,) 2(q,q,-q, q4 ) ](5)

A(q)=] 2(q,q,-q,q.) -q,' +q;-q_ +q_ 2tq'q' +q'q') I

L 2(q_q_ +qzq.) 2(q2q_ -q.q.) -q_ -q_ +q_ +q_J

A(q) = (q_ - q')l + 2qq T - 2q, Q (6)

Being able to represent the attitude matrix as an

algebraic function of the quaternions is another

computational advantage of the quaternion

representation. Now that the quaternions
representation and the attitude matrix have been
defined, the kinematics of the orientations and

dynamic equations of motion can be addressed.

Kinematics and Dynamic equations of
motion

Kinematics is the study of the orientation of

the object rotating (with its body axis fixed on the

body of the object) relative to some global frame

of reference, which results in equations of motion

of the orientation. These equations of motion are
independent of the forces associated with the

particular problem.

As defined in the literature, the kinematics
relation for the orientation is

= _C_(w)q (7)

where the expression £2 of a variable (z can be

represented as

I o]0 -Ot_ ct_

[_x] 0 ,= ct 1

--_2 (Xl

If ct is defined as

E==[ot I 0% ¢z3 0] T

then f2(ct)0 = 0 ® tz, where quaternion

multiplication, q,, ® qv2, is defined as

q., ® q._ = ® =
P, LP:J p,p, - r
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The attitude dynamic equations of motion,

relating the time derivative of the angular

momentum and the applied torque, is

dL dw
--=N-wxL=l-- (9)
dt dt

where N is the torque vector

n

N = × F, (10)

F is an external force. A spacecraft equipped with
reaction or momentum wheels is not considered a

rigid body. Therefore, the attitude dynamics

equation must be modified

dL dw
N [l-'(L-h)]xL I-- (11)

dt L - -J dt

The body angular rates associated with this system
are defined as

w = I-'(L - h) (12)

The difference between the true quaternion

and the estimated quaternion is

= q... ® 8q (13)

where 4 is the estimated quaternion and 8q is the
difference between the estimated and actual

quaternion. Substituting this into the dynamic

equation for the estimate (7) yields

d(q_ ®8q)=7C2( )(q._ ®Sq)

l ® ®Sq+q_ ® dSq I ®Sq®Cv
7q,,_ w dt = 7q_..

2 dSq =Sq®_,-w ®Sq (14)
dt

Note, 8q is unique because it is defined as

8q = lot 1] T (15)

Propagation equations

In this section, the estimation algorithm is

formulated using the same filter formulation

presented as Mook [12-13]. This formulation is

mathematically rigorous and produces accurate
estimates.

The propagation equations are based on the

equations of motion. The seventh order state
vector for this filter is

x(t) = Iq(t)l (16)

LL(t)_l

The dynamic equations are

0 = _ f2(_)q (17)

all U [l-I(L h)]xL I dcv (18)-- _.. -- -- = --

dt dt

where the body angular are

¢v = I-'(L - h) (19)

N is defined by equation (10). The state space

representation is

- + 0,_ N (20)
--_-t = 0_. [_x]J X I_ 3

dX
-- = f(w)X + BN (21)
dt

For nonlinear systems, the error analysis is
based on a linearization of the system. Defining

F =- Of, the error covariance can be written as
0X

dP
-- = FP + PF T + Q (22)
dt

Update equations

The update equations for this filter formulation are
the same as in the RTSF [21 ] formulation

y =[I_ x]ct(-)+ AV, (23)

The sensitivity matrix H can be defined as

H = [[I_e × ] 0_._] (24)

Consequently. y is linearly related to the state error

y = Hx(-) + A V, (25)

The update equations are

Ict'l=Ax=KySL (26)

(27)
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(28)

P+ = [I- KH]P (29)

_ 1 ¸

K =P Hr[Hp H +R] I (30)

Summary of algorithm

To summarize this algorithm, consider the

following steps taken during the execution of the

filter. It is assumed that all filter parameters are
known ahead of time.

Given

• The initial attitude quaternion _(+)

• The initial rate error/_k(+)

• The initial error covariance P_(+)

1. Propagate the states and error covariance
using the updated or initial values of the

state and the error. (17) and (18)

2. Compute the residual. (23)

3. Compute the update state, update
covariance and Kalman gain. (26-30)

4. Go to 1

In the filter formulation above, the process

noise is assumed to be a known gaussian process.

For real-world application, the process noise is not

known exactly• Therefore, the next logical step is

to devise an algorithm that produces the

appropriate covariance to produce accurate state

estimates. The method used in this paper is
referred to as the PNCE.

PNCE

The PNCE [21] is a parameter optimization

technique that identifies filter parameters that

produce near-optimal state estimates in the

presence of model error. This algorithm can be

thought of as an external optimality criterion for
obtaining filter parameters, in particular the

process noise covariance, Q. In the formulation

presented here, the process noise covariance
matrix is assumed diagonal. This diagonal form

simplifies the optimization and is frequently used

in research and applications. The accuracy of the

PNCE algorithm is a function of the optimization
process and the complexity of the functional form

of process noise covariance.

Figure I contains a flow chart of the PNCE

algorithm. The flow chart describes the steps

taken by the PNCE to solve for the appropriate

covariance matrix. The major steps of the PNCE

are given below:

1) Use Qi in the Kalman-type filter to
calculate the state estimates.

a) For the initial step, Qi is an initial

covariance provided by the user.
2) The state estimates are used to evaluate the

costs and constraints in the cost/constraint

routine.

3) if the cost is not minimized or the

constraints not satisfied, then the

optimization routine calculates a new Qi
and return to step 1. If the costs are
minimized and the constraints are satisfied,

then the appropriate process noise

covariance is found and PNCE stops.
PNCE

i

i

%.topic

McaJ_menl _, Y
, , !'¢el

! [-ilte[ I].rnn_lcrs [

Y

_4immtzed . N()
l" L't,n ctraml > _l

Menxu_m

_. Kalman I IIl_lInitial L'opditl.N_

I, fllel parameters

_¢

Figure 1 Flow chart of the PNCE algorithm

There are several advantages to this

algorithm. First, it provides a consistent method

of determining the appropriate process noise

covariance. Another advantage is that the physical
model error does not have to be a gaussian process

to obtain accurate results. The physical model
error is the model error associated with real-world

applications. This error is not confined to gaussian

process as defined in the original Kalman filter
formulation. This allows the filter to be

implemented in non-ideal environments, such as in

real-world applications.

As shown in Figure 1, the PNCE is made up
of several different components. The most

important of these components is the
cost/constraint routine.

Cost�Constraint Routine
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In thissection,thecost/constraintcomponent
of the PNCEis discussed.Thecost/constraint
routineis thesecondcomponentof thePNCE
algorithm.Thiscomponentdefinestheaccuracy
of theestimateof thefilterparameterestimation.
Thiscomponentisuserandproblemdependent.

Covariance Constraint

A major part of the cost/constraint routine is
the Covariance Constraint. The covariance

constraint was formulated by Mook and Junkins in

1985 [23]. This concept was developed as a part

of another estimation algorithm, the Minimum
Model Error algorithm. The covariance constraint
states that the measurement-minus-estimate error

covariance must match the measurement-minus-

truth error covariance if the estimates mirror the

truth. When this occurs the covariance constraint

is satisfied. In the PNCE, the covariance

constraint is a function of the process noise

covariance, Q. The correct Q should produce
estimates that fit the actual measurements with

approximately the same error covariance as the
actual measurement fit the truth. Therefor, the
measurement noise distribution does not have to

be completely gaussian to obtain accurate
estimates. The covariance constraint can be

expressed mathematically as:

EL( -  )T(3 - -- R

where:

(31)

R (mxm) is the measurement noise

covariance

(m x 1) is the measurement vector

23(t) is the output estimate vector

The covariance constraint is the primary cost

function used by the PNCE. However, other costs
functions and constraints can be utilized to

improve the results of the parameter identification.
These additional functions and constraints, if used,

are dependent on the application.

Simulation Results

In this section, the PNCE algorithm is used to

develop an accurate attitude determination
estimator based on real data. This data is obtained

from telemetry files provided by NASA Goddard

Space Flight Center, Flight Dynamics Branch.
These telemetry files contained a nominal pass

(nonevent) data set. A nonevent data set is used to

ensure that the "truth" (from TRIAD) is available

to evaluate the performance of the filter.

To maintain consistency, the same numerical

values of the filter parameter used in the RTSF

report [27] are used here. The inertia matrix, 1,

and the wheel inertial, I_ht, are

15.516 0.0 0.0

0.0 21.621 -0.1940.0 -0.194 15.234

kg-m

I ,, = 0.0041488 kg- m 2

The total torque vector, N, and the angular

momentum, h, are known inputs to the system. In
this simulation study, the measurement noise
covariance is obtained from the SAMPEX

evaluation report [21 ].

For the Fine Sun Sensors (FSS)

2 = 6.346 × 10 -6 The errormeasurements, crl._,s

in the FSS measurement is primarily due to the

digitization noise (0.5 deg). For the TAM

measurements, the digitization noise is only about
9

0.3 mG and cr,_At = 3mG. The time constant

used in the gyro bias model is x = 5.0see (for

playback). A distinctive feature of telemeter

SAMPEX data is the large amount of white noise

associated with the torques. The magnitude of the

torques associated with this noise is 10 -2, which

far exceeds the magnitude of the environmental

torques of 10 --6.

The noise statistics, along with physical

insight, are used to determine the growth rate of
the error covariance. The growth rate is

rad _"
(3,10-3)At --

sec _

This is an approximation of the process noise

covariance, Q. Using this approximation, physical

insight and tuning, the appropriate Q can be found,
but this process can be time-consuming. In this

experiment, an automated method of tuning the
estimator, the PNCE, is used to determine the

appropriate filter parameter.

Since the attitude estimator developed here

only requires magnetometer data, some of the

accuracy and reliability may be lost. This
simulation is used to demonstrate that an accurate

estimator can be developed automatically. To
ensure robustness in the presence of additional

modeling errors, the initial conditions are

perturbed from their correct values.
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Forthisstudy,theprocessnoisecovarianceis
assumedtobeof thefollowingform

0]Q = l_q,,

where qq and q,. are to be determined. Using the

measurement noise, the PNCE determines the

appropriate values for q,, and q;.

qq =l.e-2 q; =9.64e-8

During non-event passes, good data from both
FSS and TAM, TRIAD is considered to be near-

perfect. Therefore, TRIAD is considered to be the

Truth. A nonevent pass is part of an orbit or the

whole orbit where an eclipse or other anomalies do
not occur.

Figure 2-4 contain plots of the Roll, Pitch, and
Yaw of the truth and of the estimator using the
standard formulation. The state estimates are

initially off but then converge to the truth quickly.
This initial error is due to the initial condition

error. Figure 5 contains a plot of the output
estimates and the TAM measurement.

Formulation I Filter vs the Truth (1RIAD)

o

-1oo _

_ -200

ate
Truth (TRIAD)

-300

-400

-,_4_0 r I i r i r

20 40 60 80 100 120

Time (rain)

Figure 2 The estimated and true Pitch

Filter (First Formulation) vs the Truth (TRIAD)
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Figure 3 The estimated and true Roll

Filter (First Formulation) vs the Truth (TRIAD)
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Figure 4. The estimated and true Yaw
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Measurement and Output estimate
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Figure 5 The TAM measurements and the output

estimates

In the plots above, filter produce accurate

estimates of the attitude and the output (the TAM

measurements). Even though the initial conditions

are perturbed, the filter is able to converge to the

truth quickly. This illustrates the robustness of the
PNCE and the present filter formulation.

Conclusion

The purpose of this paper is to demonstrate a
new method for obtaining accurate state estimates

for a three-axis magnetometer attitude estimator.
This method, the PNCE, used statistical properties

and a data set to determine the appropriate process

noise covariance. The PNCE algorithm is utilized

to develop an attitude filter. This filter
formulations produced accurate attitude and output
estimates.

From the results in this paper, it has been
shown that the PNCE estimator is a robust

algorithm that can account for deterministic linear

model uncertainty and error in the initial

conditions or the filter parameters.
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